\(\int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt [3]{a+b \sec (c+d x)}} \, dx\) [859]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (warning: unable to verify)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 34, antiderivative size = 226 \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt [3]{a+b \sec (c+d x)}} \, dx=\frac {\sqrt {2} C \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},-\frac {2}{3},\frac {3}{2},\frac {1}{2} (1-\sec (c+d x)),\frac {b (1-\sec (c+d x))}{a+b}\right ) (a+b \sec (c+d x))^{2/3} \tan (c+d x)}{b d \sqrt {1+\sec (c+d x)} \left (\frac {a+b \sec (c+d x)}{a+b}\right )^{2/3}}+\frac {\sqrt {2} (b B-a C) \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},\frac {1}{3},\frac {3}{2},\frac {1}{2} (1-\sec (c+d x)),\frac {b (1-\sec (c+d x))}{a+b}\right ) \sqrt [3]{\frac {a+b \sec (c+d x)}{a+b}} \tan (c+d x)}{b d \sqrt {1+\sec (c+d x)} \sqrt [3]{a+b \sec (c+d x)}} \]

[Out]

C*AppellF1(1/2,-2/3,1/2,3/2,b*(1-sec(d*x+c))/(a+b),1/2-1/2*sec(d*x+c))*(a+b*sec(d*x+c))^(2/3)*2^(1/2)*tan(d*x+
c)/b/d/((a+b*sec(d*x+c))/(a+b))^(2/3)/(1+sec(d*x+c))^(1/2)+(B*b-C*a)*AppellF1(1/2,1/3,1/2,3/2,b*(1-sec(d*x+c))
/(a+b),1/2-1/2*sec(d*x+c))*((a+b*sec(d*x+c))/(a+b))^(1/3)*2^(1/2)*tan(d*x+c)/b/d/(a+b*sec(d*x+c))^(1/3)/(1+sec
(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 226, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.147, Rules used = {4147, 12, 3919, 144, 143} \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt [3]{a+b \sec (c+d x)}} \, dx=\frac {\sqrt {2} (b B-a C) \tan (c+d x) \sqrt [3]{\frac {a+b \sec (c+d x)}{a+b}} \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},\frac {1}{3},\frac {3}{2},\frac {1}{2} (1-\sec (c+d x)),\frac {b (1-\sec (c+d x))}{a+b}\right )}{b d \sqrt {\sec (c+d x)+1} \sqrt [3]{a+b \sec (c+d x)}}+\frac {\sqrt {2} C \tan (c+d x) (a+b \sec (c+d x))^{2/3} \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},-\frac {2}{3},\frac {3}{2},\frac {1}{2} (1-\sec (c+d x)),\frac {b (1-\sec (c+d x))}{a+b}\right )}{b d \sqrt {\sec (c+d x)+1} \left (\frac {a+b \sec (c+d x)}{a+b}\right )^{2/3}} \]

[In]

Int[(B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(a + b*Sec[c + d*x])^(1/3),x]

[Out]

(Sqrt[2]*C*AppellF1[1/2, 1/2, -2/3, 3/2, (1 - Sec[c + d*x])/2, (b*(1 - Sec[c + d*x]))/(a + b)]*(a + b*Sec[c +
d*x])^(2/3)*Tan[c + d*x])/(b*d*Sqrt[1 + Sec[c + d*x]]*((a + b*Sec[c + d*x])/(a + b))^(2/3)) + (Sqrt[2]*(b*B -
a*C)*AppellF1[1/2, 1/2, 1/3, 3/2, (1 - Sec[c + d*x])/2, (b*(1 - Sec[c + d*x]))/(a + b)]*((a + b*Sec[c + d*x])/
(a + b))^(1/3)*Tan[c + d*x])/(b*d*Sqrt[1 + Sec[c + d*x]]*(a + b*Sec[c + d*x])^(1/3))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 143

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[((a + b*x)
^(m + 1)/(b*(m + 1)*(b/(b*c - a*d))^n*(b/(b*e - a*f))^p))*AppellF1[m + 1, -n, -p, m + 2, (-d)*((a + b*x)/(b*c
- a*d)), (-f)*((a + b*x)/(b*e - a*f))], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m] &&  !Inte
gerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !(GtQ[d/(d*a - c*b), 0] && GtQ[
d/(d*e - c*f), 0] && SimplerQ[c + d*x, a + b*x]) &&  !(GtQ[f/(f*a - e*b), 0] && GtQ[f/(f*c - e*d), 0] && Simpl
erQ[e + f*x, a + b*x])

Rule 144

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[(e + f*x)^
FracPart[p]/((b/(b*e - a*f))^IntPart[p]*(b*((e + f*x)/(b*e - a*f)))^FracPart[p]), Int[(a + b*x)^m*(c + d*x)^n*
(b*(e/(b*e - a*f)) + b*f*(x/(b*e - a*f)))^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m]
&&  !IntegerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] &&  !GtQ[b/(b*e - a*f), 0]

Rule 3919

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[Cot[e + f*x]/(f*Sqr
t[1 + Csc[e + f*x]]*Sqrt[1 - Csc[e + f*x]]), Subst[Int[(a + b*x)^m/(Sqrt[1 + x]*Sqrt[1 - x]), x], x, Csc[e + f
*x]], x] /; FreeQ[{a, b, e, f, m}, x] && NeQ[a^2 - b^2, 0] &&  !IntegerQ[2*m]

Rule 4147

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) +
 (a_))^(m_), x_Symbol] :> Dist[1/b, Int[(a + b*Csc[e + f*x])^m*(A*b + (b*B - a*C)*Csc[e + f*x]), x], x] + Dist
[C/b, Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && NeQ[a^2 -
 b^2, 0] &&  !IntegerQ[2*m]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {(b B-a C) \sec (c+d x)}{\sqrt [3]{a+b \sec (c+d x)}} \, dx}{b}+\frac {C \int \sec (c+d x) (a+b \sec (c+d x))^{2/3} \, dx}{b} \\ & = \frac {(b B-a C) \int \frac {\sec (c+d x)}{\sqrt [3]{a+b \sec (c+d x)}} \, dx}{b}-\frac {(C \tan (c+d x)) \text {Subst}\left (\int \frac {(a+b x)^{2/3}}{\sqrt {1-x} \sqrt {1+x}} \, dx,x,\sec (c+d x)\right )}{b d \sqrt {1-\sec (c+d x)} \sqrt {1+\sec (c+d x)}} \\ & = -\frac {((b B-a C) \tan (c+d x)) \text {Subst}\left (\int \frac {1}{\sqrt {1-x} \sqrt {1+x} \sqrt [3]{a+b x}} \, dx,x,\sec (c+d x)\right )}{b d \sqrt {1-\sec (c+d x)} \sqrt {1+\sec (c+d x)}}-\frac {\left (C (a+b \sec (c+d x))^{2/3} \tan (c+d x)\right ) \text {Subst}\left (\int \frac {\left (-\frac {a}{-a-b}-\frac {b x}{-a-b}\right )^{2/3}}{\sqrt {1-x} \sqrt {1+x}} \, dx,x,\sec (c+d x)\right )}{b d \sqrt {1-\sec (c+d x)} \sqrt {1+\sec (c+d x)} \left (-\frac {a+b \sec (c+d x)}{-a-b}\right )^{2/3}} \\ & = \frac {\sqrt {2} C \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},-\frac {2}{3},\frac {3}{2},\frac {1}{2} (1-\sec (c+d x)),\frac {b (1-\sec (c+d x))}{a+b}\right ) (a+b \sec (c+d x))^{2/3} \tan (c+d x)}{b d \sqrt {1+\sec (c+d x)} \left (\frac {a+b \sec (c+d x)}{a+b}\right )^{2/3}}-\frac {\left ((b B-a C) \sqrt [3]{-\frac {a+b \sec (c+d x)}{-a-b}} \tan (c+d x)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x} \sqrt {1+x} \sqrt [3]{-\frac {a}{-a-b}-\frac {b x}{-a-b}}} \, dx,x,\sec (c+d x)\right )}{b d \sqrt {1-\sec (c+d x)} \sqrt {1+\sec (c+d x)} \sqrt [3]{a+b \sec (c+d x)}} \\ & = \frac {\sqrt {2} C \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},-\frac {2}{3},\frac {3}{2},\frac {1}{2} (1-\sec (c+d x)),\frac {b (1-\sec (c+d x))}{a+b}\right ) (a+b \sec (c+d x))^{2/3} \tan (c+d x)}{b d \sqrt {1+\sec (c+d x)} \left (\frac {a+b \sec (c+d x)}{a+b}\right )^{2/3}}+\frac {\sqrt {2} (b B-a C) \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},\frac {1}{3},\frac {3}{2},\frac {1}{2} (1-\sec (c+d x)),\frac {b (1-\sec (c+d x))}{a+b}\right ) \sqrt [3]{\frac {a+b \sec (c+d x)}{a+b}} \tan (c+d x)}{b d \sqrt {1+\sec (c+d x)} \sqrt [3]{a+b \sec (c+d x)}} \\ \end{align*}

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(12792\) vs. \(2(226)=452\).

Time = 55.94 (sec) , antiderivative size = 12792, normalized size of antiderivative = 56.60 \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt [3]{a+b \sec (c+d x)}} \, dx=\text {Result too large to show} \]

[In]

Integrate[(B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(a + b*Sec[c + d*x])^(1/3),x]

[Out]

Result too large to show

Maple [F]

\[\int \frac {B \sec \left (d x +c \right )+C \sec \left (d x +c \right )^{2}}{\left (a +b \sec \left (d x +c \right )\right )^{\frac {1}{3}}}d x\]

[In]

int((B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/3),x)

[Out]

int((B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/3),x)

Fricas [F]

\[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt [3]{a+b \sec (c+d x)}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {1}{3}}} \,d x } \]

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/3),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^2 + B*sec(d*x + c))/(b*sec(d*x + c) + a)^(1/3), x)

Sympy [F]

\[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt [3]{a+b \sec (c+d x)}} \, dx=\int \frac {\left (B + C \sec {\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\sqrt [3]{a + b \sec {\left (c + d x \right )}}}\, dx \]

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(1/3),x)

[Out]

Integral((B + C*sec(c + d*x))*sec(c + d*x)/(a + b*sec(c + d*x))**(1/3), x)

Maxima [F]

\[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt [3]{a+b \sec (c+d x)}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {1}{3}}} \,d x } \]

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/3),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))/(b*sec(d*x + c) + a)^(1/3), x)

Giac [F]

\[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt [3]{a+b \sec (c+d x)}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {1}{3}}} \,d x } \]

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/3),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))/(b*sec(d*x + c) + a)^(1/3), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt [3]{a+b \sec (c+d x)}} \, dx=\int \frac {\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{1/3}} \,d x \]

[In]

int((B/cos(c + d*x) + C/cos(c + d*x)^2)/(a + b/cos(c + d*x))^(1/3),x)

[Out]

int((B/cos(c + d*x) + C/cos(c + d*x)^2)/(a + b/cos(c + d*x))^(1/3), x)